Trees, Unicyclic, and Bicyclic Graphs Extremal with Respect to Multiplicative Sum Zagreb Index∗
نویسندگان
چکیده
For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M1(G) = ∑ v∈V (G) dG(v) 2 where dG(v) is the degree of vertex v in G. The alternative expression for M1(G) is ∑ uv∈E(G)(dG(u)+dG(v)). Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical invariant ∏∗ 1(G) = ∏ uv∈E(G)(dG(u) + dG(v)) as the multiplicative version of M1. Here we call this new index the multiplicative sum Zagreb index. We characterize the trees, unicylcic, and bicyclic graphs extremal (maximal and minimal) with respect to the multiplicative sum Zagreb index. Moreover, we use a method different but shorter than that in [7] for determining the minimal multiplicative sum Zagreb index of trees.
منابع مشابه
Leap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
متن کاملExtremal Unicyclic and Bicyclic Graphs with Respect to Harary Index
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, we determined the extremal (maximal and minimal) unicyclic and bicyclic graphs with respect to Harary index. 2010 Mathematics Subject Classification: 05C90
متن کاملOn the extremal graphs with respect to bond incident degree indices
Many existing degree based topological indices can be clasified as bond incident degree (BID) indices, whose general form is BID(G) = ∑ uv∈E(G) Ψ(du, dv), where uv is the edge connecting the vertices u, v of the graph G, E(G) is the edge set of G, du is the degree of the vertex u and Ψ is a non-negative real valued (symmetric) function of du and dv. Here, it has been proven that if the extensio...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملOn the harmonic index of the unicyclic and bicyclic graphs
The harmonic index is one of the most important indices in chemical and mathematical fields. It’s a variant of the Randić index which is the most successful molecular descriptor in structure-property and structureactivity relationships studies. The harmonic index gives somewhat better correlations with physical and chemical properties comparing with the well known Randić index. The harmonic ind...
متن کامل